SCOTT was one of the first brands to use carbon fiber extensively in its bicycle frames. Since then we have strived to improve carbon technology, always aiming to make lighter, more robust, and more durable products. With this in mind, SCOTT has been a forerunner in carbon process development with regards to manufacturing practices that are precise, repeatable, and minimize waste. SCOTT engineers continue to work with independent testing laboratories and engineering universities not only to maintain SCOTT's rigid standards within carbon manufacturing, but also to foster new developments and advance its carbon expertise.
ENTER THE FACTORY WATCH THE VIDEO

Type of carbon fiber

HMF Carbon fiber

HMF carbon fiber is used to maximize strength and to keep weight low. This material has an optimal blend of stiffness and strength that offers the best riding session. The know-how of SCOTT engineers is utilized in order to create the perfect lay-up with orientation and fiber size. HMF fiber will offer superior strengh compared to the industry standard.

HMF
Tensile Modulus: 125GPa
Tensile Strength 2450MPa

 

HMX Carbon fiber

SCOTT has improved upon the now conventional high modulus carbon fiber, HMF, used throughout the bicycle industry. HMX is a fiber blend used by SCOTT, and is 20 percent stiffer than its HMF counterpart for the same weight. This unique material allows SCOTT engineers to create incredibly light bikes with excellent riding characteristics. The cost of HMX, however, is three times that of HMF, and is therefore reserved for our high end Premium,Team Issue, and RC frames.

HMX
Tensile Modulus: 154GPa
Tensile Strength: 2950Mpa

HMX-SL

HMX-SL utilizes Nano-technology, which incorporates a carbon nanotube reinforced epoxy resin as well as T1000G carbon fiber. The carbon nanotubes offer an improved strength perpendicular and at off-axis to fiber direction, which allows for a better inter-laminar shear strength. The cohesion between the fibers is improved compared to our industry leading HMX carbon blend offering an unprecedented resistance. T1000G is the world's highest tensile strength fiber. This fiber is traditionally used for aerospace or defense applications. Strategic use of this new material results in a frame that is lightweight without compromise in power transfer.

WHAT IS THE DIFFERENCE






HMX filaments are both stiffer and smaller in diameter than those of HMF carbon. Because of this, an HMX frame can be built of tubes with thinner wall thicknesses to achieve the same stiffness of a corresponding HMF frame.

The final difference between a HMX and HMF frame is mainly the weight. A HMF frame is about 14% heavier than a HMX frame.

HMX-SL is 8.5% lighter on a full frame than HMX
HMX is 14% lighter on a full frame than HMF

FRAME WEIGHT (Size M)
HMX
FOIL 840g
SCALE 900 949g
HMX-SL
ADDICT SL
(Frame/Fork)
710/280g

carbon frame production process

This is a story about a carbon fiber SCOTT bicycle. Carbon is the ultimate source material for a high performance bicycle, but carbon is nothing without engineering. Every form, every detail in the layup is a tactical plan with an intended result.

THE PROCESS STEP BY STEP

1. Design & engineering

It begins as a concept where SCOTT's greatest thinkers collaborate on an intended result. SCOTT intends to make the best bicycle in every category. Priority is placed on engineering , with the knowledge that carbon must be optimized in every respect in order to achieve top performance standards and function specific designs. These crude, dark, shiny black fibers, when used correctly, will yield a quality structure that is truly purpose driven and uniquely different in ride quality. This is how a SCOTT get's it's distinct feel.

2. Precision Trimming of the HMX carbon fiber

The key to a Superior layup begins with the engineered shapes that must first be laser cut. Great care is given to utilizing all of the material in a raw sheet. HMX, or High Modulus Xtreme is a unique blend of High Modulus fiber and is very expensive when compared to your 'run of the mill' HMF. The 'bias' of the material, or the direction the fibers, are critical factors considered when the lightweight structure is built. Angles of 0°, 20°, 45° and thicknesses are closely monitored for the consistency of the product, and to maintain the bikes 'feel'. For The Carbon Experts, it means start to finish high quality standards.

3. Preparing the layers

There are over 200 pre-prepared pieces of all sizes that are necessary to construct a single Bicycle frame. Precision over these many repetitions is key to success. Without expert preparation a structure is not 100% managed for quality. SCOTT engineers take great pride in the process of preparation.

4. IMP - Preforming

IMP, or Integrated Molding Process, is a process developed by SCOTT engineers that allows for multiple tubes to be created in a single step while managing the layers completely. When the carbon fiber is fully optimized then less of it can be used resulting in a lighter structure.
Great detail is given to the shapes used in IMP because shapes help manage the loads a frame junction incurs during use. Critical to the process is the pre-tensioning of the raw material, this must be done by hand and this is part of optimizing the material.

5. IMP - Molding process

During the Molding Process the layers are compressed while they cure. This adds integrity to the structure and further optimizes the HMX fibers. This Proprietary Integrated Molding Process is the result of our 20+ year commitment to carbon fiber as a frame material. We invented Carbon Welding, a process widely used throughout the bicycle industry, but we have kept secret the expertise of IMP and we maintain a leadership position in carbon frame manufacturing at present because of IMP.

6. Machining

In order to assemble a precise final product, areas of the frame with critical tolorences are tuned so that the frame is finished well.

7. Bonding & second step layup

The process of assembling the various pre-created parts of the fuselage is like finishing a complex puzzle in which care and precision is mandatory to maintain a high quality finished product. This is the final step in constructing a SCOTT frame.

8. QUALITY CONTROL

SCOTT engineers maintain a high level of Quality Control. Destruction testing is performed at intervals throughout a production run. We know the exact serial number each member of the team has had a hand in producing and which day it was made. Without Quality control no measure of a quality product can be produced.

9. Testing strength & stiffness

Frames are put through rigorous testing during Quality Control evaluations. Fatigue tests are performed in order to gauge the long-term durability of the finished product. The base lines a frame must endure are more than 3x the amount a human being can inflict upon the structure. Every frame we produce is granted Top Performance rating from Engineering for Bicycles, an independent test lab that qualifies all bicycle product for safety and durability.

10. Masking and painting

Every great form deserves color and design. In order to achieve the rich appearance of SCOTT bicycles we choose high quality enamels and choose invoking designs to give the product more appeal.

11. Applying decals & clear coat finish

Each decal is installed by hand and a durable clear coat is applied to protect the finish.

12. Quality control & shipping

Every SCOTT frame has a serial number which allows quality controllers to track the product in each level of the procedure.

Digital Design
and Development

DIGITAL DESIGN
and Development

SCOTT carbon frames are all designed, engineered and virtually tested prior to opening new molds. Concepts are first validated by our team of designers to ensure that they integrate with the overall SCOTT ethos. Our engineers then build a 3D model of the frame which can then be analyzed by the most advanced FEA and CFD industrial tools, as well as our own, in-house developed, kinematic and composite structure software. These tools allow our engineers to assess a frame's weight and volume, stress distribution, stiffness rating, aerodynamic performance, suspension characteristics with regard to kinematics and spring rates, and fiber ply layup schedules.

INITIAL MANUFACTURING

Once the virtual design and engineering process is completed, the first mold can be opened. SCOTT engineers layup the initial frame themselves. The resulting prototype frames then go directly from the mold to the test lab to assess frame strength and stiffness. The frame will then go through several cycles of layup refinement and testing until all performance targets are met.

FINAL PRODUCTION

Prior to mass production, a pilot run of frames is produced to validate all tooling and layup schedules. These pilot frames are then subjected to further lab testing, before being ridden in real world conditions. It is at this point that our professional teams and riders enter the equation, pushing the bikes to their limits and providing valuable feedback.

TEST & RESULTS

CARBON BIKES

ROAD BIKE SERIES

ADDICT SL

The SCOTT Addict SL comes equipped with a new Superlight HMX-SL Carbon Fiber frame and fork making up a frameset that weighs in at just 1kg- our lightest bike available. Throw in a compilation of high-end Carbon components, and the Addict SL becomes a remarkable and precise feat of SCOTT engineering.

SOLACE PREMIUM

The SCOTT Solace Premium's HMX Carbon Fiber frame with engineered Power and Comfort Zones creates an incredibly perfect balance of opposites- stiff yet comfortable. With comfort characteristics that remain unchanged regardless of frame size, and a frame and fork that weigh in at 890/330g, the Solace will bring you peace on any road.

FOIL

The FOIL represents the perfect balance of Lightweight, Aerodynamics, and Stiffness, resulting in the most advanced Racing bike available. The FOIL, your next bike.

CR1

The CR1 offers the perfect balance of performance and comfort. Designed to save the rider from shocks and vibrations created by rough roads, the CR1 is the ideal choice for the enthusiast or racer who wants to enjoy long rides but doesn't want to feel beat up at the end of the day.

PLASMA

The Plasma's range incorporates SCOTT Aerodynamic Science and a unique carbon molding expertise to create no compromise machines. Plasmas are designed to help the rider minimize aerodynamic drag; they are ideally suited to Triathlons, Time Trials, and should be your choice in any race against the clock when the wind is your biggest enemy.

MOUNTAIN BIKE SERIES

SCALE 900

The Scale 29ers and 26ers are designed for maximum efficiency and minimal weight. These bikes have modest amounts of front suspension and are the lightest in their class.

SPARK 900

The Spark 29ers and 26ers are suitable for everyday riders as well as for Endurance racers. These bikes have more suspension travel than the Scales but are still very weight conscious.

GENIUS 700

The Genius is a full suspension bike designed to handle any trail, any time. It's the ultimate trail bike suitable for marathons and multi-day stage races.

GENIUS LT

The Genius LT can handle any trail, any time. They are the ultimate bikes for backcountry and big mountain riding because they pedal efficiently and offer longer suspension travel to handle technical descents.

© 2013. SCOTT Sports SA. All rights reserved.